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Apollonian Circle Packing

This is an Apollonian circle packing:
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Here’s how we construct it:

I Start with three mutually
tangent circles

I Draw two more circles, each
of which is tangent to the
original three
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Apollonian Circle Packing

I Start with three mutually
tangent circles

I Draw two more circles, each
of which is tangent to the
original three

I Continue drawing tangent
circles, densely filling space



Apollonian Circle Packing

These two images actually represent the same circle packing!

We can go from one realization to the other using circle
inversions.
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Circle Inversions
Circle inversion sends points at a distance of rd from the center of
the mirror circle to a distance of r/d from the center of the mirror
circle.
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Circle Inversions

Circle inversion sends points at a distance of rd from the center of
the mirror circle to a distance of r/d from the center of the mirror
circle.

I We apply circle inversions to
both spheres and planes,
where planes are considered
spheres of infinite radius.

I Circle inversions preserve
tangencies and angles.

Source: Malin Christersson
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To generate a packing, invert the blue line about the reds
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Apollonian Circle Packing

To generate a packing, invert the blue line about the reds



Sphere Packings: Definition

The sphere packings we’ve examined this summer are
configurations where the spheres:

I have varying radii

I are oriented to have mutually disjoint interiors

I densely fill up space



Hyperbolic Geometries

I There is a surprising connection between sphere packings and
non-Euclidean geometries.

I Euclidean geometry is characterized by Euclid’s parallel
postulate, which states that the angles formed by two lines
intersecting on one side of a third line sum to be less than π
radians.

Source: Wikipedia
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Hyperbolic Geometries

I These geometries have several models which are each used as
is necessary.

I For now, we are going to focus on the upper half-space
model of Hn+1: consider Rn+1, subject to x0 > 0. This space
has its own metric, and has as its boundary Rn.

I Because of the different metric, planes in Hn+1 are actually
hemispheres, with their circumferences lying in Rn (i.e., the
subset x0 = 0).

I Conveniently, we’ve already been looking at spheres lying in
Rn! We can “continue our configurations upwards” in what is
known as the Poincaré extension.
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Poincaré Extension



Hyperbolic Geometries

Another useful model of hyperbolic space is the two-sheeted
hyperboloid model.

Resting in R3

Source: supermath.info

I A quadratic form Q is a
polynomial where each term
is of degree exactly 2. It can
be used to define an inner
product space.

I We’re working on the top
sheet of this 2-sheeted
hyperboloid model of
hyperbolic space, where all
vectors v satisfy
〈v , v〉Q = −1

Where did this quadratic form Q = −1 come from? Circle
inversions!
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From Circle Inversions to Quadratic Forms

d̂ =
1

|z | − r
− 1

|z |+ r

d̂ =
2r

|z |2 − r2

r̂ =
r

|z |2 − r2

|z |2 − r2 =
r

r̂

|z |2

r2
− 1 =

1

r̂ r
= b̂b

b̂b− |bz|2 = −1



Crystallographic Sphere Packings

I First introduced by Kontorovich & Nakamura in 2017

I A crystallographic sphere packing is generated by the
action of a geometrically finite reflection group

I Geometrically finite: generated by a finite number of
fundamental reflections

I Groups that are geometrically finite have a finite fundamental
polytope, or the region bounded by the planes associated with
their fundamental reflections

I The fundamental polytope encodes the same information as a
Coxeter diagram
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Coxeter Diagram

A Coxeter diagram is a collection of nodes and edges that
represents a geometric relationship between n-dimensional spheres
and hyperplanes. For two nodes i , j , the edge ei ,j is defined by the
following:

ei ,j =


a dotted line, if i and j are disjoint

a thick line, if i and j are tangent

m − 2 thin lines, if the angle between i and j is π/m

no line, if i ⊥ j



Computation of the Coxeter Diagram
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Cluster and Cocluster
In a Coxeter diagram, we select nodes that are connected to each
other only by thick or dashed lines, and to the rest by thick or
dashed lines, or no lines at all. For instance:

1 23 4

5

6

789

1 23 4

5

6

789

1 23 4

5

6

789

1 23 4

5

6

789

1 23 4

5

6

789

In each case, the selected nodes form the isolated cluster, and the
remainder is the cocluster.



Cluster and Cocluster

The cocluster acts on the cluster through sphere inversions.

Eerily
enough, we get packings!



Cluster and Cocluster

The cocluster acts on the cluster through sphere inversions. Eerily
enough, we get packings!



Cluster and Cocluster

The cocluster acts on the cluster through sphere inversions. Eerily
enough, we get packings!



Structure Theorem

This is no coincidence.

In 2017, Kontorovich and Nakamura
proved the Structure Theorem for crystallographic packings: a
Coxeter diagram’s isolated cluster generates a crystallographic
packing in this manner, and all crystallographic packings arise as
the orbit of an isolated cluster.



Structure Theorem

This is no coincidence. In 2017, Kontorovich and Nakamura
proved the Structure Theorem for crystallographic packings: a
Coxeter diagram’s isolated cluster generates a crystallographic
packing in this manner, and all crystallographic packings arise as
the orbit of an isolated cluster.



Finiteness Theorem

Why are crystallographic sphere packings a pressing topic?
Recently, Kontorovich and Nakamura proved that there exist
finitely many crystallographic packings. In fact, no such packings
exist in higher than 21 dimensions.

This means that crystallographic packings can be systematically
explored and classified – which was a large part of our research this
summer.

There are 3 sources that can be used to generate crystallographic
packings, and each of us focused on one source:

I Alisa – Polyhedra

I Devora – Bianchi groups

I Zack – Higher dimensional quadratic forms
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Sources of Circle Packings

Polyhedra Dimension n > 3 Bianchi groups

Apply K-A-T Theorem Select quadratic form

Apply Vinberg’s algorithm

Obtain fundamental polyhedron

Describe with Coxeter diagram

Apply Structure Theorem

Generate circle packing

Which are integral?



Polyhedra

I How can circle packings arise from polyhedra?



Polyhedra: Koebe-Andreev-Thurston Theorem

I Theorem: Every polyhedron (up to combinatorial
equivalence) has a midsphere.

I Combinatorial equivalence: containing the same information
about faces, edges, and vertices, regardless of physical
representation

I Midsphere: a sphere tangent to every edge in a polyhedron
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Polyhedra: Koebe-Andreev-Thurston Theorem

I The midsphere gives rise to two sets of circles: facet circles
(purple) and vertex horizon circles (pink)

Planar representation of a polyhedron (left), its vertex horizon circles
(center), and its realization with midsphere, vertex horizon circles, and
facet circles (right).

Source: David Eppstein 2004



Polyhedra: Koebe-Andreev-Thurston Theorem

I Stereographically projecting the facet and vertex horizon
circles onto R2 yields a collection of circles in the plane.

I Stereographic projections map a sphere onto the plane,
preserving tangencies and angles

Source: Strebe
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I Stereographically projecting the facet and vertex horizon
circles onto R2 yields a collection of circles in the plane.

I Stereographic projections map a sphere onto the plane,
preserving tangencies and angles
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Polyhedra: Koebe-Andreev-Thurston Theorem

I By K-A-T, this collection of circles is unique up to circle
inversions

I These circles actually generate a packing: let pink → cluster,
purple → cocluster
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Polyhedra: Generating a Packing

By constructing the Coxeter diagram of this cluster/cocluster
group, we can see that the Structure Theorem applies
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Polyhedra: Generating a Packing



Polyhedra: Methods

I Polyhedron data was generated with plantri, a program
created by Brinkmann and McKay

I We wrote code in Mathematica using some techniques from
Ziegler 2004

I Data is being collected and presented on our website



Polyhedra: Website



Polyhedra: Findings

Interested in which polyhedra give rise to integral packings



Polyhedra: Findings

I Previously known integral polyhedra: tetrahedron, square
pyramid, hexagonal pyramid, and gluings thereof

I Define a gluing operation to be a joining along vertices or
faces

I Since the tetrahedron, square pyramid, and hexagonal
pyramid cannot be decomposed (unglued) into smaller
integral polyhedra, they can be considered seed polyhedra

I We found a new integral seed polyhedron!
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Polyhedra: Findings - 6v7f 2

This is the packing of a hexagonal pyramid; it is in fact the same
packing as 6v7f 2.



Polyhedra: Findings - 6v7f 2



Bianchi Groups

Bianchi groups, Bi(m), are the set of 2x2 matrices whose entries
are of the complex form a+b

√
−m, and which have determinant 1.

Luigi Bianchi began studying these groups over 100 years ago, in
1892... Before they were ever connected to circle packings!
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Bianchi Groups



Bianchi Groups

Figure: Bi(2): From 1892 to 2018



Bianchi Groups

Bianchi was interested in exploring which Bianchi groups are
reflective, meaning finitely generated. 120 years later, Belolipetsky
and McLeod conclusively showed that there are a finite number of
these reflective Bianchi groups, and enumerated them.

The reflective Bianchi groups can be used to generate circle
packings. But how do we go from matrices to circles?
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Bianchi Groups

Polyhedra Dimension n > 3 Bianchi groups

Apply K-A-T Theorem Select quadratic form

Apply Vinberg’s algorithm

Obtain fundamental polyhedron

Describe with Coxeter diagram

Apply Structure Theorem

Generate circle packing

Which are integral?



Bianchi Groups

Polyhedra Dimension n > 3 Bianchi groups

Apply K-A-T Theorem Select quadratic form

Apply Vinberg’s algorithm

Obtain fundamental polyhedron

Describe with Coxeter diagram

Apply Structure Theorem

Generate circle packing

Which are integral?

McLeod, Vinberg



Bianchi Groups

This summer, using McLeod’s application of Vinberg’s algorithm,
we catalogued all known circle packings that arise from Bianchi
groups.
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Bianchi Groups and Integrality

An interesting property of Bianchi group circle packings is that
most of them are integral.

It’s very easy to see that a packing is integral empirically just by
computing the bends of the packing, but there’s actually a way to
prove integrality more rigorously.

Likewise, there’s a way to prove nonintegrality of a packing.

An exciting part of our work this summer is proving integrality and
nonintegrality for all known Bianchi packings.
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Doubling in B̂i(3)

One note, which will also be relevant shortly, is that an insight in
Kontorovich & Nakamura’s 2017 paper was the observation that
what was thought to be the B̂i(3) Coxeter diagram did not
actually represent the full group of mirrors:
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Doubling in B̂i(3)

Through a further series of operations, we can transform the

diagram
1 2 3 4

into the diagram
1 2 3 4 5

.

However, this was done less
systematically; it primarily derived from looking at the orbit of the
original generators acting on themselves until a valid configuration
was found that has an isolated cluster.
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Questions About Existence of Packings

Now that we’ve covered polyhedra and Bianchi groups, which give
all the crystallographic packings in two dimensions, the natural
question is: Do higher dimensional packings exist? What can we
say about them?

We can answer this by looking at Coxeter
diagrams of higher-dimensional configurations, and applying the
Structure Theorem, which still holds.
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High-Dimensional Packings

This summer, I worked on putting together the known candidates
for these packings, namely 41 potential packings for quadratic

forms −dx20 +
n∑

i=1
x2i for d = 1, 2, 3.

Here is a snapshot of how

some appear on our website:
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High-Dimensional Packings

The techniques discussed here have also allowed us to attack the
following diagrams that lack isolated clusters:

Source: John McLeod

What’s something that all of these have in common? They all

feature
1 2 3 4

as a subdiagram!
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High-Dimensional Packings

So, if we apply the known transformation for
1 2 3 4

into
1 2 3 4 5

followed by a suitable action on
the remainder of the nodes in the Coxeter diagram, then hopefully
we will obtain a valid diagram representing one such desired
subgroup of mirrors.



Results

The following Coxeter diagrams were obtained for the n = 6, 7, 8

cases of the quadratic form −3x20 +
n∑

i=1
x2i :

1 2

3

4

5

6 7

8

9

1

2 3

4

5

67 8

910

1234

5

6

7 89

10 11



Results

The following is believed to work for n = 10, and works for n = 11:

12

3

4

5 6 7 8

9

10

11

12 13

1415

1

23

45

6

7

89

10

11

12

13

14

15

16



Results

Lastly, this behemoth is a diagram for n = 13:

1

2
3

4 5 6

78

9

10

11

12 13 14

15

16

17

18

19
20

21

22

23
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